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Two new dinuclear copper(II) complexes, [Cu2(bpca)2(WO4) (H2O)2] �H2O (1) and
[Cu2(bpca)2(MoO4) (H2O)2] �H2O (2) [bpca¼ bis(2-pyridylcarbonyl)amide anion], have been
synthesized and their magnetic behavior investigated as a function of temperature. The
structures of 1 and 2 have been determined by single-crystal X-ray diffraction. Complexes 1 and
2 are both 3D supramolecules with intermolecular hydrogen-bonding and �–� stacking
interactions. The magnetic susceptibilities measured over the range 2–300K show ferromagnetic
interaction between the two copper(II) ions in 1, while there is antiferromagnetic interaction
between the two copper(II) ions in 2. Based on the Hamiltonian written as H

^
¼ �2JS1 � S2,best

fitting for the experimental data leads to J¼ 0.557 cm�1 (1) and �77.2 cm�1 (2).

Keywords: Crystal structures; Magnetic properties; Copper complexes; Tungstate complex;
Molybdate complex

1. Introduction

Bpca is a tridentate ligand through its three nitrogen atoms in mononuclear complexes

[M(bpca)2], M¼Mn(II) [1], Fe(II) [2], Cu(II) [3] and Zn(II) [3] and [M(bpca)2]X with

M¼Fe(III) (X¼ClO�4 ) [2] and Rh(III) (X¼PF�6 ) [4]. In these species, two mutually

perpendicular bpca ligands build a distorted octahedral geometry around the metal ion.

Each bpca in these complexes can additionally act as a bidentate ligand through

its two carbonyl carbon atoms as revealed in the structures of [M(bpca)2{M(hfa)2}]

(M¼Mn(II) and Fe(III); hfa¼ hexafluoroacetylacetone) [5] and [Cu(bpca)]ClO4 [6].
The monoanionic character of bpca made isolation of neutral copper(II) species

of formula Cu(bpca)X (X¼monoanion) possible [7, 8–10]. Depending on the bridg-

ing ability of the X group, mononuclear (X¼NO�3 , NCS� and CH3COO�) [7–9] or

polynuclear compounds [X¼Cl� and Br�] [10] may result. In our research, we use

[Cu(bpca)]þ as a building block to design polynuclear copper(II) complexes with

extended bridging ligands such as oxalate [11], squarate [12], croconate [13], 1,2- and

1,3-dithiosquarate [14] and 1,2-dithiocroconate [15]. Significant intramolecular
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copper(II)–copper(II) magnetic interactions (either ferro- or antiferromagnetic) have
been observed.

As part of our magneto-structural studies with the paramagnetic [Cu(bpca)]þ

building block, we have prepared dinuclear copper(II) complexes [Cu2(bpca)2(WO4)
(H2O)2] �H2O (1) and [Cu2(bpca)2(MoO4) (H2O)2 �H2O (2) [bpca¼ bis(2-pyridylcarbo-

nyl) amide anion].

2. Results and discussion

2.1. X-ray diffraction studies

Both complexes are triclinic with metal ions interconnected by MO2�
4 (M¼W, Mo)

bridging two [Cu(bpca)H2O]þ units. Adjacent chains undergo �–� stacking forming a

2D architecture; in the crystal of both complexes an extensive hydrogen-bonding
scheme gives a 3D supramolecular network.

Thermal ellipsoid drawing (30% probability) of 1 with the atomic number-
ing scheme is shown in figure 1. The structure consists of a dimeric unit with a
symmetry axis, where both [Cu(bpca)H2O]þ cations are bridged by WO2�

4 . Each copper
of the dinuclear entity is five-coordinate. A � value of 0.23 indicates a distorted square

pyramidal geometry. The copper(II) ions are linked to three N atoms of Hbpca [Cu(1)–
N(1)¼ 1.987(4) Å, Cu(1)–N(2)¼ 1.936(4) Å and Cu(1)–N(3)¼ 2.007(4) Å] to the O(4) of
WO2�

4 [Cu(1)–O(4)¼ 1.909(3) Å]. These four atoms (N1, N2, N3, O4) form the
equatorial plane; the copper(II) ion deviates from this plane by 0.1009 Å. The apical
position is occupied by one oxygen of a water [Cu(1)–O(3)¼ 2.370(4) Å]. The observed

Cu–N and Cu–O distances are equivalent to similar complexes [16, 17]. The Cu(1)–O(3)
distance is longer than the equatorial bond distances, partly because the fifth
coordination position in square pyramidal arrangements is usually longer [18, 19].
Two [Cu(bpca)H2O]þ units are bridged by WO2�

4 to give a copper to copper separation
of 5.5721(19) Å in the symmetric structure.

Figure 1. Molecular structure of 1 (hydrogen atoms and solvent moleculars are omitted for clarity).
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�–� stacking and hydrogen-bonding give a 3D supramolecular network (figure 2).
The shortest face-to-face distance (3.1634 Å) and dihedral angle (6.1�) between two
bpca-rings of neighboring layer suggest the �–� interaction.

The copper in 2 is also five-coordinate (figure 3) with separation of adjacent
coppers at 5.5497(9) Å. The crystal structure of 2 is similar to 1. Figure 4 shows the 3D
network of 2. (The shortest face-to-face distance for �-stacking is 3.697 Å and the
dihedral angle is 7.5�).

2.2. Spectral properties

The room temperature UV–Vis spectra of 1 in DMSO has a weak absorption band
at 648 nm (figure 5), attributed to the d–d transition of Cu(II). UV-Vis spectra also give

Figure 2. 3D network of 1.

Figure 3. Molecular structure of 2 (hydrogen atoms and solvent moleculars are omitted for clarity).
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two weak bands (626, 682 nm) which on a tentatively square pyramidal geometry may
correspond to the transitions: 2B1!

2B2,
2B1!

2A1. Comparably, 2 displays a weak
absorption at 664 nm (figure 5), attributed to the d–d transition of Cu(II) from two
bands (658, 680 nm) which on a tentatively square pyramidal geometry may correspond
to the transitions: 2B1!

2E, 2B1!
2B2.

2.3. Magnetic properties

Variable-temperature (2–300K) magnetic susceptibility data at a magnetic field
strength of 2 KG were collected for 1 (figure 6). The �eff at room temperature,
2.564 B.M., is slightly larger than the spin-only value of 2.449 B.M. for magnetically

Figure 4. 3D network of 2.

Figure 5. UV–Vis experimental spectrum (E) and Gauss stimulated spectrum (S) of 1 and 2.
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isolated single-spin CuII. When the temperature is lowed, the value of �eff increases,

indicating that the spins are ferromagnetically coupled in 1. From100K to 300K, the data

can be roughly fit to a Curie–Weiss law with C¼ 0.832 emu.K.mol�1 and �¼ 0.308K.

The Weiss constant is positive, which also indicates that the dominant magnetic

interaction is ferromagnetic. The Hamiltonian for 1 can be written [20, 21]:

�M ¼
2Ng2�2

kðT� �Þ
½3þ expð�2J=kTÞ��1ð1� �Þ þ

Ng2�2

2kT
þN	

Best fitting for the experimental data leads to J¼ 0.557 cm�1, g¼ 2.049 with the agree-

ment factor R¼
P

(�obsd��cacld)
2/�2obsd¼ 6.4� 10�4. Compared with the reported

dinuclear Cu(II) complex [Cu2(bpca)2(H2O)2(C2O4)] � 2H2O (Cu–Cu separation of

7.460(1) Å, J¼ 1.1 cm�1) [22], 1 displays weaker ferromagnetic properties (Cu–Cu

separation of 5.5721(19) Å).
Variable-temperature (2–300K) magnetic susceptibility data at a magnetic field

strength of 2KG were collected for 2 (figure 7). The �eff at room temperature,

2.54 B.M., is slightly larger than the spin-only value of 2.449 B.M. for magnetically

isolated single-spin CuII. When the temperature is lowed, the value of �eff decreases,

indicating that the spins are antiferromagnetically coupled. From 100K to 300K,

the data can be roughly fit to a Curie–Weiss law with C¼ 1.0979 emu.K.mol�1

and �¼�113.09K. The Weiss constant is negative, which also indicates that the

dominant magnetic interaction is antiferromagnetic. The Hamiltonian for 2 can be

written [20, 21]:

�M ¼
2Ng2�2

kðT� �Þ
½3þ expð�2J=kTÞ��1ð1� �Þ þ

Ng2�2

2kT
þN	

Best fitting for the experimental data leads to J¼�77.2 cm�1, g¼ 2.06 with the agree-

ment factor R¼
P

(�obsd � �cacld)
2/�2obsd¼ 3.18� 10�4. Compared with the reported

Figure 6. �M (g) vs T and �eff (œ) vs T plots for 1. The inset is the 1/�M (�) vs T for 1.
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Table 1. Crystal data and structure refinement for 1 and 2.

Empirical formula C24H22Cu2N6O11W (1) C24H22Cu2N6O11Mo (2)
Formula weight 881.41 793.50
Temperature (K) 294(2) 293(2)

 (Mo-K	)(Å) 0.71073 0.71073
Crystal system Triclinic Triclinic
Space group P�1 P�1
Unit cell dimensions (Å, �)

a 10.263(3) 10.2788(10)
b 10.453(3) 10.4523(10)
c 13.559(5) 13.5621(14)
	 77.098(6) 77.3250(10)
� 69.845(5) 69.7020(10)
� 85.096(5) 85.1780(10)

V (Å3) 1331.0(8) 1333.2(2)
Z 2 2
DCalcd (Mgm�3) 2.199 1.977
Abs. coeff. (mm�1) 5.969 2.119
F (000) 856 792
Crystal size (mm3) 0.22� 0.16� 0.12 0.28� 0.22� 0.14
2� range (�) 1.64–26.29 2.00 to 25.03
Reflections collected 7465 7251
Unique reflections 5259 [R(int)¼ 0.0230] 4650 [R(int)¼ 0.0202]
Absorption correction Semi-empirical from equivalents Semi-empirical from equivalents
Max. and min. transmission 1.000000 and 0.576970 1.000000 and 0.417418
Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2

Data/restraints/parameters 5259/9/421 4650/0/398
Goodness-of-fit on F2 1.001 1.058
Final R indices [I42�(I)] R1¼ 0.0300, wR2¼ 0.0651 R1¼ 0.0332, wR2¼ 0.0743
R indices (all data) R1¼ 0.0392, wR2¼ 0.0691 R1¼ 0.0524, wR2¼ 0.0828
Largest diff. peak hole (e Å�3) 1.293 and �1.460 0.428 and �0.569

Figure 7. �M (g) vs. T and �eff (œ) vs T plots for 2. The inset is the 1/�M (�) vs T for 2.
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dinuclear Cu(II) complex [{Cu(acpa)}2(�-MoO4)] � 4H2O (Cu–Cu separation of
6.703(2) Å, 2J¼�5.1(4) cm�1) [23], 2 displays antiferromagnetic properties (Cu–Cu
separation of 5.5497(9) Å).

3. Experimental

3.1. Physical measurements

Infrared spectra as KBr pellets were recorded on a Bruker Tensor 27 spectrophotometer
in the range 4000–400 cm�1. UV–Vis spectra in DMSO were recorded on a Jasco V-570
UV–Vis scanning spectrophotometer.

3.2. Starting materials

Na2MoO4 and Na2WO4 were of analytical grade obtained from commercial sources
and used without further purification. [Cu(bpca) (H2O)2(O2CCH3)] �H2O was
synthesized according to the literature [24].

Table 2. Selected bond lengths [Å] and angles [�] for 1.

W(1)–O(6) 1.735(3) Cu(1)–N(3) 2.007(4)
W(1)–O(5) 1.736(3) Cu(1)–O(3) 2.370(4)
W(1)–O(4) 1.781(3) Cu(2)–O(7) 1.925(3)
W(1)–O(7) 1.818(3) Cu(2)–N(5) 1.936(4)
Cu(1)–O(4) 1.909(3) Cu(2)–N(6) 1.992(4)
Cu(1)–N(2) 1.936(4) Cu(2)–N(4) 2.013(4)
Cu(1)–N(1) 1.987(4) Cu(2)–O(8) 2.324(4)

O(6)–W(1)–O(5) 109.32(18) N(5)–Cu(2)–O(8) 94.81(15)
O(6)–W(1)–O(4) 110.04(17) N(6)–Cu(2)–O(8) 95.49(16)
O(5)–W(1)–O(4) 109.10(18) N(4)–Cu(2)–O(8) 96.33(15)
O(6)–W(1)–O(7) 106.86(17) Cu(1)–O(3)–H(3A) 136(3)
O(5)–W(1)–O(7) 109.80(17) Cu(1)–O(3)–H(3B) 108(3)
O(4)–W(1)–O(7) 111.68(16) W(1)–O(4)–Cu(1) 154.5(2)
O(4)–Cu(1)–N(2) 177.25(17) W(1)–O(7)–Cu(2) 134.1(2)
O(4)–Cu(1)–N(1) 96.99(15) Cu(2)–O(8)–H(8A) 112(4)
N(2)–Cu(1)–N(1) 81.76(16) Cu(2)–O(8)–H(8B) 114(4)
O(4)–Cu(1)–N(3) 98.29(15) C(1)–N(1)–Cu(1) 127.7(3)
N(2)–Cu(1)–N(3) 82.33(16) C(5)–N(1)–Cu(1) 113.4(3)
N(1)–Cu(1)–N(3) 159.14(17) C(6)–N(2)–Cu(1) 117.7(3)
O(4)–Cu(1)–O(3) 94.46(15) C(7)–N(2)–Cu(1) 117.4(3)
N(2)–Cu(1)–O(3) 88.18(16) C(12)–N(3)–Cu(1) 128.0(3)
N(1)–Cu(1)–O(3) 100.68(16) C(8)–N(3)–Cu(1) 112.7(3)
N(3)–Cu(1)–O(3) 92.21(16) C(13)–N(4)–Cu(2) 128.6(3)
O(7)–Cu(2)–N(5) 174.13(16) C(17)–N(4)–Cu(2) 112.6(3)
O(7)–Cu(2)–N(6) 97.37(16) C(18)–N(5)–C(19) 124.3(4)
N(5)–Cu(2)–N(6) 81.28(16) C(18)–N(5)–Cu(2) 117.9(3)
O(7)–Cu(2)–N(4) 98.28(15) C(19)–N(5)–Cu(2) 117.8(3)
N(5)–Cu(2)–N(4) 81.91(16) C(20)–N(6)–C(24) 118.8(4)
N(6)–Cu(2)–N(4) 160.17(16) C(20)–N(6)–Cu(2) 113.7(3)
O(7)–Cu(2)–O(8) 91.00(14) C(24)–N(6)–Cu(2) 127.5(3)
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3.3. Preparations of compounds

3.3.1. [Cu2(bpca)2(WO4) (H2O)2] �H2O (1). Na2WO4 (0.5mmol) was dissolved in
water (7mL) and a solution of [Cu(bpca) (H2O)2(O2CCH3)] �H2O (0.5mmol) in ethanol
(8mL) was added. The solution was stirred for 1 h and the light blue precipitatate
was filtered off. The filtrate was kept for three weeks at ambient conditions, and blue,
block crystals of 1 were isolated in 42% yield (based on copper). Elemental analysis (%)
Calcd for C24H22Cu2N6O11W: C, 41.48; H, 3.19; N, 11.89. Found: C, 41.33; H, 3.12;
N, 12.05. IR (KBr pellet): 3454(s), 1716(s), 831(s).

3.3.2. [Cu2(bpca)2(MoO4) (H2O)2] �H2O (2). [Cu(bpca) (H2O)2(O2CCH3)] �H2O
(0.5mmol) and Na2MoO4 (0.2mmol) were dissolved in water/methanol (1/1V/V,
12mL). The resulting blue solution was placed in a 25-mL teflon-lined autoclave and
heated at 413K for 4 h and then cooled to room temperature over 5 h. The resulting
blue cubic crystals obtained from the solution by pipette were washed with methanol
and water. The yield is approximately 55% (based on Cu). Elemental analysis (%)
calcd for C24H22Cu2N6O11Mo: C, 41.61; H, 3.11; N, 12.01. Found: C, 41.50; H, 3.18;
N, 12.05. IR (KBr pellet): 3442(s), 1706(s), 861(s).

Table 3. Selected bond lengths [Å] and angles [�] for 2.

Cu(1)–O(7) 1.910(3) Cu(2)–N(4) 1.999(3)
Cu(1)–N(2) 1.934(3) Cu(2)–N(6) 2.023(3)
Cu(1)–N(3) 1.992(3) Cu(2)–O(6) 2.322(3)
Cu(1)–N(1) 2.010(3) Mo(1)–O(9) 1.714(3)
Cu(1)–O(5) 2.374(3) Mo(1)–O(10) 1.724(3)
Cu(2)–O(8) 1.919(3) Mo(1)–O(7) 1.772(3)
Cu(2)–N(5) 1.938(3) Mo(1)–O(8) 1.808(3)

O(7)–Cu(1)–N(2) 177.31(14) O(9)–Mo(1)–O(8) 109.83(14)
O(7)–Cu(1)–N(3) 96.87(13) O(10)–Mo(1)–O(8) 107.36(14)
N(2)–Cu(1)–N(3) 81.76(13) O(7)–Mo(1)–O(8) 111.34(13)
O(7)–Cu(1)–N(1) 98.34(12) Cu(1)–O(5)–H(5A) 139.3
N(2)–Cu(1)–N(1) 82.45(13) Cu(1)–O(5)–H(5B) 104.4
N(3)–Cu(1)–N(1) 159.59(13) Cu(2)–O(6)–H(6A) 112.1
O(7)–Cu(1)–O(5) 94.25(11) Cu(2)–O(6)–H(6B) 108.5
N(2)–Cu(1)–O(5) 88.28(12) Mo(1)–O(7)–Cu(1) 154.33(18)
N(3)–Cu(1)–O(5) 100.66(12) Mo(1)–O(8)–Cu(2) 134.25(16)
N(1)–Cu(1)–O(5) 91.71(12) C(1)–N(1)–Cu(1) 128.2(3)
O(8)–Cu(2)–N(5) 174.08(13) C(5)–N(1)–Cu(1) 112.5(3)
O(8)–Cu(2)–N(4) 97.59(13) C(7)–N(2)–Cu(1) 117.9(3)
N(5)–Cu(2)–N(4) 81.19(13) C(6)–N(2)–Cu(1) 117.1(3)
O(8)–Cu(2)–N(6) 98.38(13) C(12)–N(3)–Cu(1) 127.7(3)
N(5)–Cu(2)–N(6) 81.67(13) C(8)–N(3)–Cu(1) 113.6(3)
N(4)–Cu(2)–N(6) 159.96(13) C(17)–N(4)–Cu(2) 113.9(3)
O(8)–Cu(2)–O(6) 91.45(11) C(13)–N(4)–Cu(2) 127.1(3)
N(5)–Cu(2)–O(6) 94.43(12) C(19)–N(5)–Cu(2) 118.3(3)
N(4)–Cu(2)–O(6) 95.70(12) C(18)–N(5)–Cu(2) 117.7(3)
N(6)–Cu(2)–O(6) 95.90(12) C(24)–N(6)–C(20) 118.8(3)
O(9)–Mo(1)–O(10) 109.41(15) C(24)–N(6)–Cu(2) 128.2(3)
O(9)–Mo(1)–O(7) 109.23(15) C(20)–N(6)–Cu(2) 113.0(3)
O(10)–Mo(1)–O(7) 109.63(14)
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3.4. X-ray structure analysis

Structural measurements of the two complexes were performed on a computer
controlled Bruker SMART 1000 CCD diffractometer equipped with graphite-
monochromated Mo-K	 radiation with radiation wavelength 0.71073 Å at room
temperature by using the !-scan technique. Lorentz polarization and absorption
corrections were applied. The structures were solved using SHELXL-97 and refined by
the full-matrix least-squares method. Non-hydrogen atoms were refined anisotropically.
Hydrogen atoms were located from the difference Fourier map and refined. Crystal
data and structure refinement for 1 and 2 are shown in table 1, and selected bond
lengths and angles for 1 and 2 are given in tables 2 and 3.

Supplementary material

Crystallographic data (excluding structure factors) for the structures in this article have
been deposited with Cambridge Crystallographic Data Centre as supplementary
publication CCDC Nos. 289128 and 602390. Copies of the data can be obtained free of
charge on application to Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK (Fax: -44-1223-336033; E-mail for inquiry: fileserv@
ccdc.cam.ac.uk; V-email for deposition: deposit@ccdc.cam.ac.uk).
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